besidedegree@gmail.com
+9779709005491
Back to Home
School SEE Optional Mathematics

Grade 9 Notes of Matrices|| Optional Mathematics

Highlight Save
Matrices are rectangular arrangements of numbers in rows and columns used to organize data and solve mathematical problems efficiently. Each number in a matrix is called an element, and the size of a matrix is defined by its number of rows and columns. Matrices can be of various types, such as row, column, square, diagonal, identity, and symmetric, each having unique properties. Operations on matrices include addition, subtraction, scalar multiplication, matrix multiplication, and transpose, which follow specific rules and properties.

Matrices – 3.0 Review

Matrices are widely used in mathematics. The simplest but important application is to present data in rectangular arrangements for decision making.

Example – Grade Sheet of a Student:

SubjectCredit hourTotal GPObtained GPHighest GP of classNepali54.03.53.8Mathematics54.04.04.0English54.03.83.9Science54.03.94.0Social Study54.03.73.8HPE54.03.83.9Optional Maths54.03.94.0

Rows represent subjects.

Columns represent credit hour, total GP, obtained GP, highest GP.

Questions:
a) Which row represents Social Studies? → 5th row
b) Which column represents Obtained GP? → 4th column
c) Highest GP in Science? → 4.0

Matrix Representation:

M =                 

M = [
 5  4.0  3.5  3.8
 5  4.0  4.0  4.0
 5  4.0  3.8  3.9
]
Number of rows = 3

Number of columns = 4

Order of M = 3×4

3.1 Matrix Elements

An element in row i and column j is denoted as a_ij.

Example:

 

A = [
 a11 a12 a13
 a21 a22 a23
]

a23 = element in 2nd row, 3rd column

a32 = element in 3rd row, 2nd column (if matrix has 3 rows)

3.2 Types of Matrices

TypeDefinitionExampleRow matrix1 rowA = [0 1 -3]Column matrix1 columnB = [3; -2; 1]Square matrixRows = ColumnsS = [[-2,4,6],[1,3,-5],[3,7,-9]]Rectangular matrixRows ≠ ColumnsP = [[1,2,3],[-2,4,-6]]Zero (null) matrixAll elements zeroO = [[0,0],[0,0]]Diagonal matrixNon-zero elements on main diagonal, others zeroD = [[1,0],[0,2]]Scalar matrixDiagonal elements equalS = [[2,0],[0,2]]Identity matrixScalar matrix with 1s on diagonalI = [[1,0],[0,1]]Triangular matrixUpper/lower triangularU = [[1,2],[0,3]] ; L = [[1,0],[2,3]]Symmetric matrixA = A^TS = [[x,y],[y,z]]

3.3 Operations on Matrices

Addition

Matrices must have the same order.

Add corresponding elements.

Example:

A = [
 3  7
 11 13
], 
B = [
 2  4
 8 10
]

A + B = [
 5 11
 19 23
]

Properties of Addition:

Commutative: A + B = B + A

Associative: (A + B) + C = A + (B + C)

Identity: A + O = A

Additive inverse: A + (-A) = O

 

Subtraction

Subtract corresponding elements.

Not commutative: A − B ≠ B − A

 

Scalar Multiplication

Multiply each element by a scalar k:

kA = k * [
 a b
 c d
] = [
 ka kb
 kc kd
]

Matrix Multiplication

Condition: Number of columns of first = Number of rows of second

Element at position (i,j) = row_i × column_j

Not commutative: AB ≠ BA

Example:

A = [
 5 8
 2 -3
], 
B = [
 7 -4
 3 2
]

AB = [
 59 -4
 15 -14
], 
BA = [
 27 68
 9 18
]

3.4 Transpose of a Matrix

Transpose (A^T) = Interchange rows and columns

Properties:

(A^T)^T = A

(A + B)^T = A^T + B^T

(kA)^T = kA^T

Important Questions & Solutions

 

Q1. Find 2A if

A = [ 3  5  7
     1  0 -2 ]
Solution:
Multiply each element by 2:

2A = [ 6  10  14
      2   0  -4 ]
 

Q2. Find the sum of the matrices

A = [ 1  2
     3  4 ],   B = [ 2  0
                      1  3 ]
Solution:
Add corresponding elements:

A + B = [ 1+2   2+0
         3+1   4+3 ]
      = [ 3  2
          4  7 ]


Q3. Find the difference of the matrices

A = [ 1  2
     3  4 ],   B = [ 2  0
                      1  3 ]

Solution:
Subtract corresponding elements:

A - B = [ 1-2   2-0
         3-1   4-3 ]
      = [ -1  2
           2  1 ]
 

Q4. Find the transpose of the matrix

A = [ 1  2
     3  4 ]

Solution:
Swap rows and columns:

A^T = [ 1  3
       2  4 ]
 

Q5. Find the product of the matrices

A = [ 1  2
     3  4 ],   B = [ 2  0
                       1  3 ]

Solution:
Multiply row of A with column of B:

AB = [ (1*2 + 2*1)   (1*0 + 2*3)
      (3*2 + 4*1)   (3*0 + 4*3) ]
  = [ 4  6
      10 12 ]
 

Q6. Find 3A if

A = [ 1  0  2
    -1  3  1 ]


Solution:
Multiply each element by 3:

3A = [ 3  0  6
     -3  9  3 ]


Q7. Find the product of matrices

A = [ 1  2  3
     4  5  6 ],   B = [ 7  8
                          9 10
                         11 12 ]

Solution:
Multiply row of A with column of B:

AB = [ (1*7 + 2*9 + 3*11)   (1*8 + 2*10 + 3*12)
      (4*7 + 5*9 + 6*11)   (4*8 + 5*10 + 6*12) ]
  = [ 58  64
      139 154 ]
 

Q8. Find 2A - B if

A = [ 1  2
     3  4 ],   B = [ 0  1
                       1  0 ]

Solution:
Step 1: Multiply A by 2 → 2A = [2 4 ; 6 8]
Step 2: Subtract B → 2A - B = [2-0 4-1 ; 6-1 8-0]

2A - B = [ 2  3
          5  8 ]

Q9. Check if the matrix

A = [ 1  0  0
     0  1  0
     0  0  1 ]

is an identity matrix.

Solution:
Identity matrix has 1s on the diagonal and 0s elsewhere.

A is an identity matrix.

 

Q10. Check if the matrix

A = [ 1  2
     2  4 ]

is symmetric.

Solution:
Transpose A^T = [1 2 ; 2 4] → same as A

A is symmetric.

For further practice visit this link !!

https://besidedegree.com/exam/s/academic

 

Related Videos

CLASS 9 INTRODUCTION TO MATRIX Part 1|| By : Shiksha Ko Yatra