besidedegree@gmail.com
+9779709005491
Back to Home
School SEE Compulsory Mathematics

Grade 9 Notes of Indices|| Compulsory Mathematics

Highlight Save
Indices are rules for handling powers of numbers and variables. Understanding multiplication, division, negative, and zero exponents simplifies expressions. Exponential equations can be solved by making bases equal and equating the exponents.

8.0 Review

Laws of Indices

1. Multiplication of same base
1.1 x^m * x^n = x^(m+n)
1.2 Examples:
1.2.1 x^2 * x^3 = x^(2+3) = x^5
1.2.2 y^5 * y^2 = y^(5+2) = y^7
1.2.3 a^4 * a^7 = a^(4+7) = a^11

2. Division of same base
2.1 x^m / x^n = x^(m-n)
2.2 Examples:
2.2.1 x^5 / x^3 = x^(5-3) = x^2
2.2.2 x^7 / x^4 = x^(7-4) = x^3
2.2.3 25 / 2^2 = 25 / 4

3. Power of a power
3.1 (x^m)^n = x^(mn)
3.2 Examples:
3.2.1 (x^3)^2 = x^(32) = x^6
3.2.2 (2^2)^3 = 2^(23) = 64
3.2.3 (5^2)^2 = 5^(22) = 625

4. Fractional powers
4.1 x^(m/n) = n-th root of (x^m) = (n-th root of x)^m

5. Negative powers
5.1 x^(-n) = 1 / x^n

Adding Indices (video lessons, examples ...

8.1 Problems Related to Indices

Understanding differences

10^3 vs 101010 → same, just expanded form

5^3 = 125, 5^(-3) = 1 / 125 → negative powers give reciprocal

3^6 = 729, 6^3 = 216 → order matters

Key Formulas

x^(-m) = 1 / x^m

x^m * x^n = x^(m+n)

x^m / x^n = x^(m-n)

(x^m)^n = x^(m*n)

 

Some Important Questions

Example 1: Find the value

4^(-2) = 1 / 16

4^(2/3) = cube root of 16

3^6 = 729

Example 2: Simplify
(x^(a+c) / x^(a+b)) * (x^(b+c) / x^(b+c)) * (x^(c+a) / x^(c+b))
or, apply rules:

x^m / x^n = x^(m-n)

(x^m)^n = x^(mn)

(a+b)(a-b) = a^2 - b^2
or, simplify step-by-step → x^0 = 1

1. Solve 3^x = 81
or, 3^x = 3^4
or, x = 4

2. Solve 8^x = 2^(2x+1)
or, 8^x = (2^3)^x
or, 2^(3x) = 2^(2x+1)
or, 3x = 2x + 1
or, x = 1

3. Solve 3 * 81^x = 9^(x+2)
or, 3 * (3^4)^x = (3^2)^(x+2)
or, 3 * 3^(4x) = 3^(2x+4)
or, 3^(4x+1) = 3^(2x+4)
or, 4x + 1 = 2x + 4
or, 2x = 3
or, x = 1.5

4. Solve 5 * 125^x = 5^(2x-2)
or, 5 * (5^3)^x = 5^(2x-2)
or, 5^(3x+1) = 5^(2x-2)
or, 3x + 1 = 2x - 2
or, x = -3

5. Solve 3^(x+1) + 3^x = 108
or, 3^x * 3 + 3^x = 108
or, 3^x * (3 + 1) = 108
or, 3^x * 4 = 108
or, 3^x = 27
or, x = 3

6. Solve 5^(2x+1) + 5^x = 150
or, 5^(2x+1) = 5 * (5^x)^2
or, 5 * (5^x)^2 + 5^x = 150
or, 5^x * (5 * 5^x + 1) = 150
or, 5^x * 6 = 150
or, 5^x = 25
or, x = 2

7. Solve 3^(x+1) * 2^(2x+1) = 6
or, 3^x * 3 * 2^(2x) * 2 = 6
or, 3^x * 2^(2x) * 6 = 6
or, 3^x * 2^(2x) = 1
or, x = 0

8. Solve 2^(x+3) + 2^x = 18
or, 2^x * 2^3 + 2^x = 18
or, 2^x * (8 + 1) = 18
or, 2^x * 9 = 18
or, 2^x = 2
or, x = 1

9. Solve 2^(2x) + 2^(3x)
or, factor 2^(2x) → 2^(2x) * (1 + 2^x)
or, depends on given value, simplify further using powers

10. Solve 5^(1/x) + 5^(1/x)
or, combine like terms → 2 * 5^(1/x)
or, simplify as needed


For further practice visit this link !!

https://besidedegree.com/exam/s/academic


 

Important Links