besidedegree@gmail.com
+9779709005491
Back to Home
School SEE Computer Science

Grade 9||Number System|| Notes

Highlight Save
From this chapter, we learn that computers use binary (0s and 1s) while humans use decimal, so number system conversions are essential for communication between humans and machines. We explore four key systems decimal, binary, octal, and hexadecimal and master conversions and binary arithmetic to understand how data is processed in technology. This foundation is crucial for computer science, programming, and digital electronics in our daily digital world.

Number System

1. Evolution & Introduction

Early counting methods: fingers, sticks, stones, knots.

Development of symbols โ†’ systematic number systems.

Modern usage: Different systems for different fields (daily life, computing, engineering).

2. What is a Number System?

A set of symbols and rules used to represent numbers and perform arithmetic.

Base/Radix: Total number of distinct digits used.

Example: Decimal base = 10 โ†’ digits 0โ€“9.

3. Types of Number Systems

๐Ÿ”ข Decimal System (Base 10)

Digits: 0โ€“9.

Place values: Units (10โฐ), Tens (10ยน), Hundreds (10ยฒ), etc.

Example:

  • (719)10=7ร—102+1ร—101+9ร—100(719)10โ€‹=7ร—102+1ร—101+9ร—100

๐Ÿ”ข Binary System (Base 2)

Digits: 0, 1.

Used by computers (on/off states, transistors).

Example:

= 32 + 16 + 0 + 4 + 2 + 1 = (55)โ‚โ‚€

๐Ÿ”ข Octal System (Base 8)

Digits: 0โ€“7.

Used in computing (shorter than binary).

Example:

๐Ÿ”ข Hexadecimal System (Base 16)

Digits: 0โ€“9, A(10), B(11), C(12), D(13), E(14), F(15).

Widely used in programming, memory addressing, color codes.

Example:

4. Binary Arithmetic (Deep Explanation)

4.1 Binary Addition

Rules:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 carry 1 (i.e., 10 in binary)

Example:

  1 1 1 0 1  (29 in decimal)
+   1 0 1 1  (11 in decimal)
------------
1 0 1 0 0 0  (40 in decimal)

Carry explained:

Column from right:
1 + 1 = 0, carry 1
0 + 1 + carry 1 = 0, carry 1
1 + 0 + carry 1 = 0, carry 1
1 + 1 + carry 1 = 1, carry 1
1 + carry 1 = 10

4.2 Binary Subtraction

Rules:

0 โ€“ 0 = 0

1 โ€“ 0 = 1

1 โ€“ 1 = 0

0 โ€“ 1 = 1 borrow 1 from left column

Example:

  1 0 1 1 0  (22 in decimal)
-   1 0 1 1  (11 in decimal)
------------
 0 1 1 0 1  (13 in decimal)

In column 2 (from right): 0 โˆ’ 1 โ†’ borrow from column 3, becomes 10 โˆ’ 1 = 1.

4.3 Binary Multiplication

Rules: Same as decimal, but simpler:

0 ร— 0 = 0
0 ร— 1 = 0
1 ร— 0 = 0
1 ร— 1 = 1

Example:

      1 0 1  (5)
   ร— 1 1 0  (6)
   --------
     0 0 0
   1 0 1
+ 1 0 1
-----------
 1 1 1 1 0  (30)

14.4 Binary Division

Process: Similar to long division in decimal.
Example: (1101)โ‚‚ รท (10)โ‚‚

      1 1 0  (quotient = 6 in decimal)
    --------
10 | 1 1 0 1
     - 1 0
     -----
       1 0
      - 1 0
      -----
         0 1  (remainder = 1)

Result: Quotient = 110โ‚‚ (6), Remainder = 1.

5. Number System Conversions

5.1 Decimal to Other Bases

General Rule: Repeated division by the target base.

Decimal โ†’ Binary

Divide by 2, note remainder.

Repeat until quotient is 0.

Write remainders bottom to top.

Example: (46)โ‚โ‚€ โ†’ (?)โ‚‚

(46)โ‚โ‚€ โ†’ (?)โ‚‚
46 รท 2 = 23 rem 0
23 รท 2 = 11 rem 1
11 รท 2 = 5 rem 1
5 รท 2 = 2 rem 1
2 รท 2 = 1 rem 0
1 รท 2 = 0 rem 1
Read โ†‘ = 101110โ‚‚

(46)โ‚โ‚€ = (101110)โ‚‚

Decimal โ†’ Octal

Divide by 8, note remainder.

Example: (345)โ‚โ‚€ โ†’ (?)โ‚ˆ

(345)โ‚โ‚€ โ†’ (?)โ‚ˆ
345 รท 8 = 43 rem 1
43 รท 8 = 5 rem 3
5 รท 8 = 0 rem 5
Read โ†‘ = 531โ‚ˆ

Decimal โ†’ Hexadecimal: Divide by 16, note remainder.
(255)โ‚โ‚€ โ†’ (?)โ‚โ‚†
255 รท 16 = 15 rem F
15 รท 16 = 0 rem F
Read โ†‘ = FFโ‚โ‚†

5.2 Binary/Octal/Hex โ†’ Decimal

Method: Expand using place values (powers of base).

Binary โ†’ Decimal:
(1011)โ‚‚ = 1ร—2ยณ + 0ร—2ยฒ + 1ร—2ยน + 1ร—2โฐ
= 8 + 0 + 2 + 1 = 11โ‚โ‚€

Octal โ†’ Decimal:
(157)โ‚ˆ = 1ร—8ยฒ + 5ร—8ยน + 7ร—8โฐ
= 64 + 40 + 7 = 111โ‚โ‚€

Hex โ†’ Decimal:
(1A3)โ‚โ‚† = 1ร—16ยฒ + 10ร—16ยน + 3ร—16โฐ
= 256 + 160 + 3 = 419โ‚โ‚€

Binary โ†” Octal

Binary โ†’ Octal: Group binary digits into 3 from right, convert each to octal.

(101110)โ‚‚ โ†’ 101 | 110 โ†’ 5 | 6 โ†’ (56)โ‚ˆ

Octal โ†’ Binary: Convert each octal digit to 3 binary digits.

(F3)โ‚โ‚† โ†’ F=1111, 3=0011 โ†’ (11110011)โ‚‚

octal โ†” Hexadecimal (via Binary)

Convert octal โ†’ binary โ†’ hex (or reverse).

Example: (345)โ‚ˆ โ†’ binary โ†’ hex:

3=011, 4=100, 5=101 โ†’ (011100101)โ‚‚
Group 4: 0001 1100 1010? (pad leading zeros)
Actually: 011100101 โ†’ 0|1110|0101 โ†’ 0 E 5 โ†’ (E5)โ‚โ‚†

6. Why Conversions Matter

  1. Computers use binary (0s and 1s).
  2. Humans use decimal.
  3. Octal and hexadecimal are shorter forms of binary used in programming, networking (IP addresses), digital circuits, cryptography, etc.
  4. Conversions allow communication between humans and machines.

7. Memory Aid & Tips

Base Values: B2 O8 D10 H16 (Binary 2, Octal 8, Decimal 10, Hex 16).

Hex Letters: A=10, B=11, C=12, D=13, E=14, F=15.

Binary Groups: Octal โ†’ 3 bits, Hex โ†’ 4 bits.

Conversion Flowchart:

Decimal โ†โ†’ Binary โ†โ†’ Octal
         โ†“
       Hex

8. Common Mistakes to Avoid

Forgetting to write base subscript: (101)โ‚‚ not just 101.

In binary addition: 1 + 1 = 0 carry 1, not 2.

In conversions: Group binary from right to left for octal/hex.

Hex letters Aโ€“F are case-insensitive but often written uppercase.

Gallery

Conversion Table
Conversion Table
Types Of Number System
Types Of Number System

Related Videos

Video Explanation Of Number System by ItzRafiq

Important Links