Trigonometry Unit 5 covers compound angles, including addition and subtraction formulas for sin, cos, tan, and cot, along with standard trigonometric values from 0° to 90°. Multiple-angle identities such as sin 2A, cos 2A, and sin 3A are derived and used to prove many standard results, along with special angles like 18° and 36°. Submultiple-angle formulas (A/2, A/3) include all half-angle forms and key identities like sin θ/(1 + cos θ) = tan(θ/2). Transformation formulas convert products to sums and sums to products, helping simplify expressions and evaluate special products. Conditional identities for A + B + C = 180° include tan A + tan B + tan C = tan A tan B tan C and sin A + sin B + sin C = 4 cos(A/2) cos(B/2) cos(C/2). The chapter also covers solving trigonometric equations using CAST and general solutions, and concludes with height–distance applications using tan θ = height/distance.
Complete Trigonometry Notes (Unit 5)
5.0 Review: Compound Angles & Standard Values
Compound Angles: For angles A and B:
- Addition/Subtraction Formulas:
- sin(A ± B) = sin A cos B ± cos A sin B
- cos(A ± B) = cos A cos B ∓ sin A sin B
- tan(A ± B) = (tan A ± tan B)/(1 ∓ tan A tan B)
- cot(A ± B) = (cot A cot B ∓ 1)/(cot B ± cot A)
5.1 Multiple Angles
Multiple Angles: 2A, 3A, etc.
For 2A:
- sin 2A = 2 sin A cos A
- cos 2A = cos² A - sin² A = 2 cos² A - 1 = 1 - 2 sin² A
- tan 2A = 2 tan A / (1 - tan² A)
- cot 2A = (cot² A - 1)/(2 cot A)
Alternative Forms:
- sin 2A = 2 tan A / (1 + tan² A)
- cos 2A = (1 - tan² A)/(1 + tan² A)
- 2 cos² A = 1 + cos 2A → cos² A = (1 + cos 2A)/2
- 2 sin² A = 1 - cos 2A → sin² A = (1 - cos 2A)/2
- tan² A = (1 - cos 2A)/(1 + cos 2A)
- cot² A = (1 + cos 2A)/(1 - cos 2A)
Geometrical Proof: Unit circle with diameter PR, point Q, angle A at periphery → central 2A.
For 3A:
- sin 3A = 3 sin A - 4 sin³ A
- cos 3A = 4 cos³ A - 3 cos A
- tan 3A = (3 tan A - tan³ A)/(1 - 3 tan² A)
- Derived from sin(2A + A), cos(2A + A).
Common Identities & Proofs:
- cot A = ± √[(1 + cos 2A)/(1 - cos 2A)]
- sin 2A / (1 + cos 2A) = tan A
- (1 - cos 2A + sin 2A)/(1 + cos 2A + sin 2A) = tan A
- tan(π/4 + θ) = cos 2θ / (1 - sin 2θ)
- √2 + √(2 + √(2 + 2 cos 8θ)) = 2 cos θ
- cos⁶ θ + sin⁶ θ = (1/4)(1 + 3 cos² 2θ)
- Many with 45° ± θ, powers, products.
Special Values (from multiple angles):
- sin 18° = (√5 - 1)/4
- cos 18° = √(10 + 2√5)/4
- sin 36° = √(10 - 2√5)/4
- cos 36° = (√5 + 1)/4
- tan 18° = √(25 - 10√5)/5 or 2 - √5 (rationalized)
5.2 Submultiple Angles (A/2, A/3)
Submultiple: A/2, A/3, etc.
For A/2:
- sin A = 2 sin(A/2) cos(A/2)
- cos A = cos²(A/2) - sin²(A/2) = 2 cos²(A/2) - 1 = 1 - 2 sin²(A/2)
- tan A = 2 tan(A/2)/(1 - tan²(A/2))
- sin A = 2 tan(A/2)/(1 + tan²(A/2))
- cos A = (1 - tan²(A/2))/(1 + tan²(A/2))
For A/3:
- sin A = 3 sin(A/3) - 4 sin³(A/3)
- cos A = 4 cos³(A/3) - 3 cos(A/3)
- tan A = (3 tan(A/3) - tan³(A/3))/(1 - 3 tan²(A/3))
Identities:
- sin θ / (1 + cos θ) = tan(θ/2)
- (1 - cos θ)/sin θ = cot(θ/2)
- 1 + sin θ = (sin(θ/2) + cos(θ/2))²
- 1 - sin θ = (sin(θ/2) - cos(θ/2))²
Comparative Table (Multiple vs Submultiple): As in text (20 pairs mirrored).
5.3 Transformation Formulas
Product to Sum:
- 2 sin A cos B = sin(A+B) + sin(A-B)
- 2 cos A sin B = sin(A+B) - sin(A-B)
- 2 cos A cos B = cos(A+B) + cos(A-B)
- 2 sin A sin B = cos(A-B) - cos(A+B)
Sum to Product:
- sin C + sin D = 2 sin((C+D)/2) cos((C-D)/2)
- sin C - sin D = 2 cos((C+D)/2) sin((C-D)/2)
- cos C + cos D = 2 cos((C+D)/2) cos((C-D)/2)
- cos C - cos D = -2 sin((C+D)/2) sin((C-D)/2)
Applications: Simplify products/sums, prove identities (e.g., sin θ sin(60°±θ) = (1/4) sin 3θ, special products like sin 20° sin 40° sin 80° = √3/16).
5.4 Conditional Identities (A + B + C = 180°)
- tan A + tan B + tan C = tan A tan B tan C
- sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
- cos 2A + cos 2B + cos 2C = -1 - 2 cos 2A cos 2B cos 2C (variants)
- sin A + sin B + sin C = 4 cos(A/2) cos(B/2) cos(C/2)
- Many half-angle, product forms.
5.5 Trigonometric Equations
- Definition: Equation with trig ratios of unknown angle.
- Solution: Values satisfying equation.
- CAST Rule: Quadrants signs (All, Sin, Tan, Cos positive).
- Steps:
- Sign → quadrant.
- Reference angle.
- Adjust: 180° - θ (2nd), 180° + θ (3rd), 360° - θ (4th).
- General: +360°k.
- Range: sin/cos [-1,1].
5.6 Height and Distance
- Elevation: Angle above horizontal to higher object.
- Depression: Angle below horizontal to lower object.
- Applications: tan θ = height / distance; change in angle/shadow for multiple measurements.
5 Most Common Questions
- If sin A = 3/5, find sin 2A, cos 2A, tan 2A.
- Prove sin 3A = 3 sin A - 4 sin³ A.
- Solve sin x + cos x = √2 (0° ≤ x ≤ 360°).
- If A + B + C = 180°, prove sin A + sin B + sin C = 4 cos(A/2) cos(B/2) cos(C/2).
- A tower casts a shadow 40 m longer at 30° sun elevation than at 60°. Find height.
Visit this link for further practice!!
https://besidedegree.com/exam/s/academic